Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens.
نویسندگان
چکیده
Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)-dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments.
منابع مشابه
Light-Harvesting Complex Stress-Related Proteins Catalyze Excess Energy Dissipation in Both Photosystems of Physcomitrella patens.
Two LHC-like proteins, Photosystem II Subunit S (PSBS) and Light-Harvesting Complex Stress-Related (LHCSR), are essential for triggering excess energy dissipation in chloroplasts of vascular plants and green algae, respectively. The mechanism of quenching was studied in Physcomitrella patens, an early divergent streptophyta (including green algae and land plants) in which both proteins are acti...
متن کاملMechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution.
The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 A structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals t...
متن کاملPhyscomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization.
Light is the source of energy for photosynthetic organisms; when in excess, however, it also drives the formation of reactive oxygen species and, consequently, photoinhibition. Plants and algae have evolved mechanisms to regulate light harvesting efficiency in response to variable light intensity so as to avoid oxidative damage. Nonphotochemical quenching (NPQ) consists of the rapid dissipation...
متن کاملChlamydomonas Xanthophyll Cycle Mutants Identified by Video Imaging of Chlorophyll Fluorescence Quenching.
The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the [delta]pH that is generated by photosynthetic electron ...
متن کاملPossible Role of Cbr, an Alga1 Early-Light-lnduced Protein, in Nonphotochemical Quenching of Chlorophyll Fluorescence’
l h e unicellular green alga Dunaliella bardawil exhibits typical responses to excessive light when starved for sulfate under normal light (60 p E m-’s-’) but not under low light (14 p E m-’ s-’). Algae were analyzed during severa1 days of sulfate starvation for nonphotochemical quenching of chlorophyll fluorescence in the absence or presence of the uncouplers SF-6847 (SF) or carbonyl cyanide p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2013